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Abstract
Curcumin, also known as diferuloylmethane, is derived 
from the plant Curcuma longa and is the active ingre
dient of the spice turmeric. The therapeutic activities 
of curcumin for a wide variety of diseases such as dia 
betes, allergies, arthritis and other chronic and infla
mmatory diseases have been known for a long time. 
More recently, curcumin’s therapeutic potential for pre 
 venting and treating various cancers is being recog
nized. As curcumin’s therapeutic promise is being ex
plored more systematically in various diseases, it has 
become clear that, due to its increased bioavailability in 
the gastrointestinal tract, curcumin may be particularly 
suited to be developed to treat gastrointestinal diseases. 
This review summarizes some of the current literature 
of curcumin’s anti-inflammatory, anti-oxidant and anti-
cancer potential in inflammatory bowel diseases, hepatic 
fibrosis and gastrointestinal cancers.
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INTRODUCTION
Curcumin (Curcuma longa) is the active ingredient of  the 
spice turmeric, used in cooking in India and other regions 
of  Asia. It has a long history as an herbal remedy for a 
variety of  diseases and was used in Indian and Chinese 
traditional medicine as early as 700 AD. Multiple the- 
rapeutic activities have been attributed to curcumin mos-
tly because of  its anti-inflammatory and anti-oxidant 
effects. As such, curcumin was predominantly used to 
treat inflammatory conditions including bronchitis, colds, 
parasitic worms, leprosy, arthritis and inflammations of  
bladder, liver, kidney and skin, and to improve symptoms 
such as fever and diarrhea. In addition, curcumin is thou-
ght to have beneficial effects in diseases of  the neurolo
gical system including Alzheimer’s disease[1]. Most recently, 
curcumin has demonstrated chemopreventive and anti-
cancer effects in several human cancers[2,3]. In particular, 
curcumin may slow the growth of  gastrointestinal cancers 
including esophageal, mouth, intestinal, stomach and 
colon, probably due to its increased bioavailability in the 
gastrointestinal tract. Curcumin has also been suggested 
as a remedy for liver and other digestive diseases such 
as irritable bowel syndrome, colitis, Crohn’s disease and 
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bacterial and parasitic diseases. This review seeks to sum-
marize some of  the cellular effects of  curcumin and ex-
plores the possibilities of  curcumin in treating gastrointes-
tinal diseases (Figure 1).

CURCUMIN AND CURCUMIN 
ANALOGUES
Curcumin, a hydrophobic polyphenol, is the yellow pig-
ment in the Indian spice turmeric derived from the rhi-
zome of  the herb Curcuma longa. Curcumin is also known 
as diferuloylmethane and chemically is a bis-α, β-un-
saturated β-diketone. Differing in methoxy substitutions 
on the aromatic ring, turmeric contains three natural 
analogues, the so-called curcuminoids, with curcumin be-
ing the most abundant (77%) and the less common deme-
thoxycurcumin (17%) and bisdemethoxycurcumin (3%)[4]. 
Curcumin, demethoxycurcumin and bisdemethoxycur-
cumin differ in their chemical structures only with regard 
to methoxy substitutions and, while the overall biological 
activities of  these curcuminoids including antioxidant, 
anti-inflammatory, anti-microbial and anti-carcinogenic 
properties appear to be comparable, differences in their 
efficiencies have been observed[4]. In addition, several 
other naturally occurring bioactive compounds have some 
structural similarity with curcumin such as ferulic acid, 
cinnamic acid, caffeic acid, capsaicin and gingerol[4]. Like 
curcuminoids, these compounds possess antioxidant, anti-
inflammatory and antitumor activity. However, whether 
and how the differences in these compounds can be ex-
ploited pharmacologically remains to be determined.

In general, natural products are a rich source of  pote-
ntially therapeutic drugs but many natural products have to 
be structurally modified and optimized to become useful 
pharmacological agents. In the case of  curcumin, the 
poor aqueous solubility and relatively low bioavailability 
have been major obstacles for its clinical development as a 
therapeutic drug[5]. To enhance the solubility and stability 
and to increase its therapeutic potential, various curcumin 
analogs have been synthesized. Based on the modification 
of  the basic structure, these compounds are being broadly 
grouped as “curcumin derivatives” (retain the basic struc-
tural features of  curcumin), “curcumin analogues” (all 
other compounds with some structural analogy to cur-
cumin) and “metal complexes of  curcumin.” In contrast 
to curcumin analogues, often not obtained from curcumin 
directly, curcumin derivatives are generally synthesized 
by derivatization starting from curcumin. Modifications 
include acetylation, alkylation, glycosylation and amino 
acetylation of  the phenolic hydroxyl group; demethylation 
of  the methoxy groups; or acetylation, alkylation and 
substitution of  the reactive methylene group of  the linker 
(reviewed in[4]). Although comparison of  the potency of  
curcumin and its derivatives among different studies is dif-
ficult due to the variety of  assays and assay systems used, 
some general trends have emerged regarding the function 
of  the different reactive groups. For example, the phe-
nolic hydroxyl groups are important for curcumin's anti-

oxidant activities, the C7 linker and its carbonyl functions 
are important for anti-inflammatory activity and the 
conjugated enones have been shown to act as Michael 
acceptors for curcumin’s anti-cancer activity (for a compre-
hensive review see[4,6]). While the number of  curcumin 
derivatives and analogues is increasing, one of  the better 
known is diphenyl difluoroketone (EF24), a fluorinated 
analogue that does not have a phenolic hydroxyl group 
and possesses only one enone. EF24 has been reported 
to have greater biological activity and bioavailability than 
curcumin without increased toxicity and it also seems to 
possess a distinctive mechanism of  action from curcu-
min[7]. While EF24 has been shown to have a more potent 
anti-cancer activity than curcumin, its therapeutic potential 
in other diseases remains to be determined.

BIOLOGICAL ACTIVITIES AND 
MOLECULAR TARGETS OF CURCUMIN
Curcumin has been ascribed a multitude of  therapeutic 
activities and has been associated with suppression of  
inflammation, angiogenesis, tumorigenesis, and diabetes, 
and with therapeutic effects in diseases of  the cardio-
vascular, pulmonary and neurological systems and of  
skin and liver. In general, most of  these effects can be 
attributed to the antioxidant, antiinflammatory and anti
cancer activities of  curcumin. Curcumin is an effective 
scavenger of  reactive oxygen species and reactive nitro-
gen species[8]. Curcumin’s protective function against 
peroxidative damage of  biomembranes, known to be 
a free-radical-mediated chain reaction, has mainly been 
attributed to the scavenging of  the reactive free radicals 
involved in peroxidation. These scavenging properties of  
curcumin have also been considered to be responsible for 
its protective role against oxidative damage of  DNA and 
proteins, believed to be associated with a variety of  chro-
nic diseases such as cancer, atherosclerosis, neurodege-
nerative diseases and aging[8]. In addition to its direct 
antioxidant activity, curcumin may function indirectly as 
an antioxidant by inhibiting the activity of  inflammatory 
enzymes or by enhancing the synthesis of  glutathione. 
The antiinflammatory activity of  curcumin seems to be 
comparable to steroidal drugs and non-steroidal drugs 
such as indomethacin and phenylbutazone[8]. Many studies 
of  curcumin’s anti-inflammatory properties point to its 
ability to suppress prostaglandin synthesis by its effect 
on cyclooxygenase (COX)[9], a key enzyme responsible 
for the conversion of  arachidonic acid to prostaglandins. 
Curcumin has also been shown to suppress the production 
of  cytokines such as interferon-γ (IFN-γ), interleukins and 
tumor necrosis factor (TNF); to inhibit the inducible nitric 
oxide synthase (iNOS); and to suppress the activation of  
NF-κB[9,10]. 

These pathways affected by curcumin not only play 
an important role in inflammation; they have also been 
associated with the development and progression of  can-
cer. Curcumin has promising chemopreventive and thera-
peutic potential for various cancers including leukemia, 
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lymphoma and cancers of  the gastrointestinal tract, geni-
tourinary system, breast, ovary, head and neck, lung and 
skin[2]. Aside from avoiding well-established risk factors 
such as smoking or obesity, the chemopreventive effects 
of  curcumin are one of  the most promising approaches 
to reduce the risk of  cancer. Curcumin likely exerts its 
inhibitory effect on cancer development by several mecha-
nisms such as inhibition of  carcinogen activation and 
stimulation of  carcinogen detoxification, prevention of  
oxidative DNA damage and its capacity to reduce inflam
mation[11]. In several culture and in vivo models, curcumin 
has been shown to modulate enzymes that are involved 
in the metabolic activation of  carcinogens (e.g. inhibition 
of  cytochrome P450) and the detoxification and excretion 
of  such compounds (e.g. induction of  glutathione-S-
transferase). Of  cancer therapeutic interest is the ability 
of  curcumin to induce cell cycle arrest and apoptosis 
specifically in cancer cells and to inhibit angiogenesis and 
metastasis. Experimental evidence suggests that curcumin 
modulates major signaling pathways involved in apoptotic 
cell death by stimulating pro-apoptotic enzymes such as 
caspases or by inhibiting cell survival pathways such as 
Akt, NF-κB, AP-1 and JNK[12]. In addition, curcumin 

exhibits anti-proliferative effects by either modulation of  
oncogenes and tumor suppressor genes and/or through 
cell cycle regulatory proteins and checkpoints, thus in-
ducing cell cycle arrest followed by apoptosis. One of  the 
major problems associated with cancer progression to an 
aggressive disease is angiogenesis, the development of  
new blood vessels that fuel the rapid growth of  tumors. 
One of  the prime factors regulating angiogenesis is vas-
cular endothelial growth factor (VEGF). Curcumin has 
been shown not only to inhibit VEGF but also other 
angiogenic factors and could prove effective in preventing 
the progression of  cancer to an aggressive disease. Metas-
tasis is one of  the main causes of  cancer death with inva-
sive tumors. Interestingly, curcumin treatment significantly 
inhibits matrix metalloproteinases, a family of  zinc-depen-
dent endopeptidases that degrade extracellular matrix, 
allowing tumors to invade[13]. Thus curcumin inhibits a 
variety of  critical steps in the early development of  cancer 
as well as in the progression of  cancer to an aggressive 
and deadly disease and has the potential to develop into a 
potent cancer therapeutic. 

Curcumin affects a multitude of  molecular targets that 
include transcription factors, receptors, kinases, inflam-
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Oral cancer and cancer of the 
submandibular gland 
C/EBP alpha, COX2, CYP1A1, 
CYP1B1, HSP70, IGFBP5, MAPK/
ERK, MMP2/9 , NFκB, p38 
MAPK, ROS, uPA

Liver fibrosis 
αSMA, CD11b, CTGF, MCP1, 
MFκB, PPARγ, procollagen 
type Ⅰ, TGFβ1, TIMPs, TLR4

Hepatic cancer 
AP1, HIF1, MMP9, NFκB

Inflammatory bowel diseases, 
Ulcerative colitis, 
Crohn's disease 
Akt, COX2, IL1β, IL10, iNOS, 
MAPK/ERK, MyD88, NFκB, p38 
MAPK, PGE2, TLR4, TRPV1, 
VCAM1

Esophageal cancer 
NFκB, PGE2

Gastric cancer 
AID, caspase3, cyclin D1, 
cycl in E, NFκB, PAK1, 
Pgp, RTKN

Pancreatic cancer 
Akt, ATM/Chk1, COX2, CXCR1, 
CXCR2, EGFR, HO1, miR21, 
m iR22 , m iR200 , NFκB, 
Notch1, PGE2, ROS, Sp1, Sp3, 
Sp4, STAT3, survivin/BIRC5, 
WT1

Intestinal cancer 
Akt/mTOR, Ca2+/calmodulin, 
COX2, EGFR, IGF1R, JNK, 
IL8, NFκB, Wnt/βcatenin

Familial adenomatous 
polyposis 
COX2

Figure 1  Molecular targets of curcumin in gastrointestinal diseases. These include AID, activation-induced cytidine deaminase; Akt; AP-1: activated protein-1; α-SMA: 
alpha smooth muscle actin; caspase-3; ATM/Chk1; Ca2+/calmodulin; CD11b; C/EBPalpha: CCAAT/enhancer-binding protein alpha; COX-2: cyclooxygenase-2; CTGF: 
connective tissue growth factor; CXCR1: chemokine receptor 1; CXCR2: chemokine receptor 2; cyclin D1; cyclin E; CYP1A1: cytochrome P-450 A1; CYP1B1: cytochrome 
P-450 B1; EGFR: epidermal growth factor receptor; HIF-1: hypoxia-inducible factor-1; HO-1: heme oxygenase 1; HSP70: heat shock protein 70; IGF-1R: insulin-like 
growth factor 1 receptor; IGFBP-5: insulin-like growth factor binding protein-5; IL-1β/8/10: interleukin-1beta/8/10; iNOS: inducible nitric oxide synthase; JNK: C-jun N-terminal 
kinase; MAPK/ERK: mitogen-activated protein kinase/extracellular receptor kinase; MCP-1: monocyte chemoattractant protein 1; miR-21, -22, 200: microRNA-21, -22, 
-200; MMP-2/9: matrix metalloproteinase-2/9; mTOR: mammalian target of rapamycin; MyD88: myeloid differentiation primary response gene (88); NF-κB: nuclear factor-
kappa B; Notch-1; p38 MAPK: p38 mitogen-activated protein kinase; PAK1: p21-activated kinase 1; PGE2: prostaglandin E2; P-gp: P-glycoprotein; PPARγ: peroxisome 
proliferator-activated receptor gamma; procollagen type Ⅰ; ROS: reactive oxygen species; RTKN: rhotekin; Sp1, -3, -4; STAT3: signal transducers and activators of 
transcription 3; surviving/BIRC5; TGF-β1: transforming growth factor-beta1; TIMPs: tissue inhibitors of MMPs; TLR-4: toll-like receptor-4; TRPV-1: transient potential 
vanilloid receptor-1; uPA: urokinase-type plasminogen activator; VCAM-1: vascular cell adhesion molecule-1; WT-1: Wilms’ tumor gene 1.



matory cytokines and other enzymes (for a comprehensive 
review see[14]), which may partly explain its effectiveness 
against a variety of  diseases. However, it is imperative 
to distinguish between the primary molecular targets of  
curcumin and the events caused as downstream effects. 
For example, curcumin regulates expression and function 
of  COX-2 and 5-LOX, which are important mediators 
of  inflammation by pleiotropic mechanisms on the tran
scriptional and post-translational level. But, in recent years, 
curcumin has been found to bind physically to more than 
30 proteins; of  these, many are directly relevant to the 
biological activities of  curcumin. Interactors of  curcumin 
include albumin; ions such as Zn2+, Cu2+ and Fe2+; tran-
scription factors; growth factor receptors; cytokines; genes 
involved in cell proliferation and apoptosis; and various 
other enzymes[15]. One of  the better characterized inte-
ractions is the binding of  curcumin to tubulin, where it 
inhibits microtubule assembly. In HeLa and MCF7 cells, 
curcumin induces tubulin aggregation and depolymerizes 
interphase and mitotic microtubules[16]. One interesting 
feature of  curcumin is its ability to cross-link proteins. 
For example, curcumin has been shown to cross-link the 
cystic fibrosis chloride channel CFTR, thereby activating 
the channel[17]. Because curcumin has such a wide range 
of  target proteins, it remains to be determined whether 
curcumin binds to a specific structural motif. Identifica
tion of  curcumin’s binding motifs will not only be impor-
tant to understand curcumin’s biological roles but also be 
a major step in developing more specific and effective cur
cumin analogs for therapy.

CURCUMIN AND GASTROINTESTINAL 
CANCERS
One of  the major problems of  developing curcumin as 
a pharmacological therapeutic is its low general bioavai-
lability. However, clinical trials suggest that biologically 
active levels of  curcumin can be achieved in the gastro-
intestinal tract after oral delivery. This increased availability 
together with its anti-cancer activity shows promise for 
curcumin to be developed as a chemotherapeutic agent 
for gastrointestinal cancers. 

Oral cavity and submandibular gland
Although studies on curcumin in cancers of  the oral ca-
vity are very limited, curcumin has shown some promise 
in the prevention of  oral carcinogenesis. In the 7, 12-di-
methylbenz[a]anthracene (DMBA) hamster buccal pouch 
model of  carcinogenesis, curcumin alone[18,19] or when 
administered together with piperine[20] significantly redu
ced the formation of  oral carcinoma, probably due to its 
anti-lipidperoxidative and antioxidant potential together 
with its effect on modulating carcinogen detoxification. 
In studies in patients with oral leukoplakia, considered a 
premalignant lesion, an increase in vitamin C and E sug-
gested that curcumin could mediate anticancer activities 
by increasing the local and systemic anti-oxidant status, 
thus preventing lipid peroxidation and DNA damage[21]. 

Other studies suggested that curcumin might act as an 
oral cavity chemopreventive agent via its ability to inhibit 
carcinogen activation by inducing expression of  and incr-
easing the function of  cytochrome P-450 (CYP) 1A1 
and/or CYP1B1[22]. In leukoplakia cells (MSK-Leuk1s) 
but not in immortalized oral mucosa epithelial cells (NO 
M9-CT), curcumin inhibited cell growth by affecting 
the translation machinery and inhibiting cap-dependent 
translation[23]. In oral epithelial GNM cells, curcumin 
reduced the expression of  heat shock protein 70 (HSP70). 
High levels of  HSP70 protein have been associated with 
tumor progression[24]. Chang et al[25] reported that in oral 
keratinocytes, curcumin activates p38, which, in turn, 
activated the C/EBPalpha (CCAAT/enhancer-binding  
protein alpha) transactivator to induce insulin-like growth 
factor binding protein-5 (IGFBP-5). IGFBP-5 upregu-
lation is associated with the suppression of  oral cancer 
cell tumorigenesis in xenografts. In the invasive oral 
squamous carcinoma cell line YD-10B, curcumin exhi-
bited anti-motility activity which was mediated by the 
inhibition of  MAPK/ERK and NFκB signaling and 
consequently down-regulation of  proteolytic enzymes 
such as urokinase-type plasminogen activator (uPA) and 
matrix metalloproteinases (MMP)-2/9[26]. Furthermore, 
curcumin-abrogated smokeless tobacco induced activa-
tion of  NF-κB and expression of  COX-2 in oral prema-
lignant and cancer cells in vitro[27]. Interestingly, in three 
independent studies in human submandibular gland ade-
nocarcinoma cells (HSG), curcumin induced apoptosis 
through generation of  reactive oxygen species (ROS)[28-31], 
suggesting that curcumin can induce cell death in these 
cancer cells.

Esophagus 
Esophageal cancer consists of  two types, squamous cell 
carcinoma and adenocarcinoma. Even with current treat- 
ment, overall survival in patients with esophageal cancer 
remains poor. While there is a desperate need of  inno-
vative treatment strategies for esophageal cancer, only 
a few studies have tested whether curcumin could be a 
potential candidate. In Flo-1 and OE33 adenocarcinoma 
cell lines, curcumin inhibited NF-κB activity and induced 
apoptosis. Curcumin also enhanced 5fluorouracil (5FU) 
and cisplatin (CDDP)-mediated chemosensitivity[32]. 
In a different study, curcumin induced cell death in the 
two adenocarcinoma cell lines OE33 and OE19 as well 
as in two squamous cell carcinoma cell lines OE21 and 
KYSE450 in a dose-dependent manner, probably by in-
hibiting the ubiquitin-proteasome system[33]. In the squa- 
 mous cell carcinoma cell line HKESC1, curcumin par
tially reversed the mitogenic effect of  prostaglandin E2 
(PGE2) that has been implicated in esophageal squamous 
cell carcinoma growth[34]. In addition to its potential che-
motherapeutic effect, curcumin might have chemopre-
ventive effects in esophageal cancer. In studies of  N-nitro-
somethylbenzylamine (NMBA)-induced esophageal 
carcinogenesis in rats, curcumin inhibited incidence and 
multiplicity of  preneoplastic lesions when given during 
the post initiation phase and the initiation phase[35].
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Stomach
Helicobacter pylori (H. pylori) infection of  gastric epithelial 
cells is one of  the key mechanisms in the development 
of  gastric cancer. One of  the proposed molecular mecha-
nisms of  H. pylori-induced carcinogenesis is the anomalous 
expression of  activation-induced cytidine deaminase 
(AID), a process that involves NF-κB activation by H. 
pylori[36]. Interestingly, curcumin downregulated H. pylori-
induced AID expression via the inhibition of  the NF-κB 
pathway[37]. In addition, curcumin has direct antimicrobial 
activity against H. pylori and eradicated H. pylori in vitro 
and in vivo[38,39]. Thus, curcumin could be considered as a 
potential chemopreventive agent against H. pylori-induced 
gastric carcinogenesis[37-40]. Another pathway that has been 
implicated in gastric tumorigenesis and chemoresistance 
is one involving Rho, the Rho effector rhotekin (RTKN) 
and NF-κB[41]. Curcumin was able to block the RTKN
mediated anti-apoptotic effect in AGS cells[41], a cell line 
that has been previously used to show that curcumin can 
inhibit the growth of  gastric carcinoma cells[42]. In cultured 
gastric cancer cells (BGC823, SGC7901, MKN1 and 
MGC803), curcumin inhibited invasion and proliferation 
by downregulating p21-activated kinase 1 (PAK1) activity 
and cyclin D1 expression[43]. Reduced cyclin D and E levels 
were also found in KATO-III gastric cancer cells upon 
induction of  apoptosis by curcumin[44]. In addition, cur- 
cumin can reverse the multidrug resistance in the resis- 
tant human gastric carcinoma SGC7901/VCR cell line, 
which might be associated with a decrease in P-glyco- 
protein (P-gp) function and expression and the pro-
motion of  caspase-3 activation[45], suggesting that cur-
cumin might have chemotherapeutic effects. In addition, 
chemopreventive effects of  curcumin have been demon- 
strated in N-methyl-N’-nitro-N-nitrosoguanidine (MN 
NG)-induced glandular stomach carcinogenesis[46-51] and 
in benzo[a]pyrene (BaP)-induced forestomach cancer 
in mice[52]. A biological effect of  curcumin in chemopre-
vention of  cancer has also been suggested from phase I 
clinical trials[53]. 

Intestine
Of  all the gastrointestinal cancers, curcumin’s anti-cancer 
potential has been best characterized in intestinal cancers 
using cultured tumor cells and in vivo animal models. While 
Phase I and II clinical trials of  curcumin are ongoing and 
curcumin is well tolerated and pharmacologically active 
concentrations can be achieved in colorectal tissues in 
patients after oral administration, conclusive studies as to 
its anti-cancer activity in patients remain to be done[54-57]. 
Chemopreventive effects of  curcumin have been demon-
strated in transgenic mouse models and in tumor xeno-
grafts. In the 1,2dimethylhydrazine (DMH)[58,59] and 
the azoxymethane (AOM)-induced[50,60-64] rat colon can-
cer model, curcumin reduced the number of  aberrant 
crypt foci[59,63] or inhibited tumor development[50,58,60-63]. 
Treatment of  HCT116 colon tumorbearing mice with 
curcumin resulted in reduced tumor growth[65]. In some 
tumor models, curcumin analogs have been suggested to 

be more efficient than curcumin; GO-Y030 was found 
to be more potent than curcumin in inducing apoptosis 
in cultured human colorectal cancer cells[66] and increased 
the lifespan in Apc(580D+) mice[66,67]. EF24 significantly 
suppressed the tumor growth of  HCT116 colon cancer 
xenografts[68].

Curcumin may also enhance the effectiveness of  cur-
rent chemotherapeutics and, in combination with chemo-
therapy, may provide a superior strategy for treatment 
of  gastrointestinal cancers[69]. In APC (Min/+) mice, the 
combination therapy of  curcumin and dasatinib was highly 
effective in causing regression of  intestinal adenomas[70]. 
The combination of  curcumin with resveratrol was found 
to be more effective in inhibiting the growth of  HCT116 
cells in vitro and in vivo in SCID xenografts when compared 
with resveratrol alone[71]. In orthotopic colorectal cancer 
cell xenografts, curcumin sensitized colorectal cancer to 
the anti-tumor and anti-metastatic effects of  capecitabine 
by suppressing NF-κB signaling[72]. Liposomal curcumin 
in combination with oxaliplatin significantly inhibited the 
growth of  LoVo and Colo205 xenografts and exhibited 
anti-angiogenic effects[73]. Studies in cultured colon cancer 
cells found that curcumin can potentiate the pro-apopto-
tic effects of  sulindac sulfone[74], 5-fluorouracil[75,76] and 
oxaliplatin[76,77].

In addition to its well-characterized function in sup-
pressing NF-κB and COX-2 signaling and other well-
known mechanisms of  inducing apoptosis[78-82], many 
more molecular targets of  curcumin have been identified 
in colon cancer cell lines. These include inhibition of  
signaling pathways like EGFR[76,83-85], IGF1R[76,85], Akt/
mTOR[86], Wnt/β-catenin[87-89], c-jun N-terminal kinase 
(JNK)[90] and Ca2+/calmodulin[91]. In addition, curcumin 
may suppress the expression of  factors with procarcinoge-
nic effects such as neurotensin-induced IL-8 expression[92]. 
Curcumin has also been shown to inhibit the proteasome 
activity and induce apoptosis in human colon cancer cells 
in vitro and in vivo[65].

Radiation therapy is an integral part of  the preope
rative treatment of  rectal cancers. Curcumin has been 
suggested to be a potential radiosensitizing agent with 
enhanced anti-angiogenic effects in colorectal cancer 
radiation therapy[80]. Furthermore, curcumin blocked the 
transient inducible NF-κB signaling in several colon can-
cer cell lines that provides a prosurvival response to radia-
tion[81]. It also sensitized HCT116 xenografts to gamma
radiation[79], suggesting that administration of  curcumin 
could be used to reduce the side-effects usually associated 
with radiation therapy.

One of  the intriguing aspects of  curcumin is its chemo-
preventive function in familial adenomatous polyposis 
(FAP), which provides an extended opportunity for inter-
vention and cancer prevention. Indeed, combination treat-
ment with curcumin and quercetin appeared to reduce the 
number and size of  ileal and rectal adenomas in patients 
with FAP[93]. In the Apc (Min/+) mouse model of  FAP, 
dietary curcumin showed antioxidant effects and reduced 
COX-2 expression that has been associated with retarda-
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tion in adenoma development[94,95]. However, while these 
initial studies are promising, the chemopreventive effects 
of  curcumin in FAP require further investigation.

Pancreas 
Pancreatic cancer is often diagnosed in an advanced stage 
and is characterized by rapid disease progression, high in- 
 vasiveness and resistance to chemotherapy. Recent re
search suggested that curcumin might have antitumor 
function in pancreatic cancer alone[96,97] or in combination 
with other drugs such as gemcitabine[98-102] or celeco-
xib[103]. Systematic administration of  a polymeric nanopar- 
 ticle-encapsulated curcumin blocked tumor growth and 
metastasis in subcutaneous and orthotopic Pa03C xeno-
graft models of  pancreatic cancer[96] and liposomal curcu-
min decreased tumor growth in cultured pancreatic cancer 
cells[104] and in MiaPaCa-2 subcutaneous xenografts[105]. 
Nanoparticle encapsulation of  curcumin into a MePEG/
poly-epsilon caprolactone (PCL) diblock copolymeric 
micelle enhanced the uptake and cytotoxicity in the pan-
creatic cancer cell lines MiaPaCa-2 and PANC-1[106] and 
polyethylene glycosylated (PEG) curcumin conjugate 
was more effective in inducing cell cycle arrest and apop-
tosis when compared with free curcumin[107]. Phase Ⅱ 
trials of  curcumin in patients with advanced pancreatic 
cancer revealed that curcumin was well-tolerated and had 
biological activity in some patients[108].

Many of  the molecular pathways that have been im- 
plicated in the anticancer properties of  curcumin in 
other gastrointestinal tumors have also been identified 
in pancreatic cancer, including inhibition of  NF-κB sig-
naling[109-111]. Inhibition of  NF-κB was dependent on 
downregulation of  the transcription factors Sp1, Sp3, and 
Sp4 and was accompanied by the induction of  ROS[109,112]. 
Other targets of  curcumin include Akt; COX-2; PGE2; 
micro RNAs miR200, miR21, a signature of  tumor 
aggressiveness, and miR22[98,112], EGFR[113], Notch-1[114], 
IL8 receptors CXCR1 and CXCR2[115], STAT3, survivin/
BIRC5[116], ATM/Chk1[117], heme oxygenase1 (HO1)[118] 
and the transcription factor Wilms’ tumor gene 1 (WT1)[119]. 
STAT3 activity in pancreatic cancer cell lines was also 
inhibited by GO-Y030, a potent curcumin analog[120]. 
Other curcumin analogs have shown higher potency 
than curcumin itself  in pancreatic cancer. FLLL11 and 
FLLL12 were substantially more potent in inhibiting 
cell viability and inducing apoptosis than curcumin[121]. 
The fluorocurcumin analog of  curcumin, CDF, showed 
a more superior bioavailability in pancreatic tissue when 
compared with curcumin[122]. 

Liver
Few patients with hepatocellular carcinoma are diagnosed 
early and treatment options are very limited. Surgery is 
currently the most effective treatment. However, recur
rence rates are high and longterm survival is poor. Use 
of  radiation and chemotherapy is limited and identifying 
novel chemopreventive and chemotherapeutic agents 
is imperative. Several studies have investigated the anti-

carcinogenic activity of  curcumin in hepatic cancer cells 
in vitro. In HepG2 cells, the curcumin analogue GL63 
inhibited growth more effectively than curcumin; this 
result was associated with the activation of  ER stress 
and apoptosis, an effect not observed with curcumin[123]. 
Curcumin induced G2/M arrest and apoptosis in various 
hepatoma cell lines such as Huh7, Hep3B, SKHep1 and 
QGY7703, but in this study, HepG2 cells were reported 
to be curcumin-insensitive[124]. However, several other 
studies reported effects of  curcumin in HepG2 cells, 
including induction of  apoptosis[125-127] through mito-
chondrial hyperpolarization and mitochondrial DNA 
damage[125,126] or through a p53-dependent pathway[127], 
and inhibition of  hypoxia induced angiogenesis through 
downregulation of  hypoxiainducible factor HIF1[128]. 
In Hepa16 cells, knockdown of  the extracellular matrix 
metalloproteinase inducer EMMPRIN (CD147) conferred 
sensitivity to curcumin[129] and curcumin blocked the tran-
sactivation of  the c-met promoter by activated protein 1 
(AP-1)[130]. In the highly invasive SKHep1 hepatocellular 
carcinoma cell, curcumin had significant anti-invasion 
activity which was associated with inhibition of  metal-
loproteinase MMP-9[131]. In hepatic cancer HA22T/VGH 
cells, curcumin alone or in combination with cisplatin or 
doxorubicin exerted cell growth inhibitory and apoptotic 
effects, in part due to changes in NF-kB levels[132].

Curcumin exhibited anticancer properties in several in 
vivo models of  hepatocellular carcinoma. In mice treated 
with Nbis (2hydroxypropyl) nitrosamine (DHPN), 
curcumin significantly inhibited liver adenoma formation 
and growth[133] and in mice with diethylnitrosamine (D 
EN)-induced hepatocarcinogenesis, curcumin reduced 
tumor multiplicity and incidence[134]. In HepG2 xenografts, 
tetrahydrocurcumin did not show any cytotoxic activity 
to HepG2 cells even at the highest doses but had anti
angiogenic effects[135-137]. In an orthotopic implantation 
model of  hepatocellular carcinoma CBO140C12 cells 
curcumin suppressed intrahepatic metastasis but did not 
affect the growth of  the implanted tumor itself[138]. In  
N-nitrosodiethylamine (DENA)-initiated and phenobar-
bital-promoted hepatocarcinogenesis in Wistar rats, curcu-
min showed beneficial effects against oxidative tissue 
damage during chemically induced hepatocarcinogene-
sis[139-141], suggesting that curcumin may exhibit potential 
as a therapeutic in liver cancer. 

CURCUMIN AND LIVER FIBROSIS
Liver fibrosis results from chronic damage to the liver 
due to excessive accumulation of  extracellular matrix 
proteins and is considered a wound healing response to 
chronic liver injury. The main causes of  liver fibrosis are 
considered to be chronic hepatitis C infection, alcohol 
abuse and nonalcoholic steatohepatitis. The major colla-
gen-producing cells during chronic liver injury are hepatic 
stellate cells (HSCs) but the cells also include portal myo 
fibroblasts and myofibroblasts of  bone marrow origin 
and are activated by fibrogenic cytokines such as TG 
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F-β1, angiotensin Ⅱ and leptin. In recent years, it has been  
shown that advanced liver fibrosis can be reversed, thus  
prompting the development of  antifibrotic drugs. It has  
been shown that curcumin can protect HSCs against  
activation by leptin and leptin-induced oxidative stre- 
 ss[142,143] by interrupting insulin signaling[144], by attenuation 
of  oxidative stress[144,145], by inhibition of  LDL-induced 
activation[146-148], by inhibiting TGF-β1 induced α-smooth 
muscle actin (α-SMA) expression and collagen depo-
sition[149] and by activation of  PPARgamma (peroxisome 
proliferator-activated receptor gamma)[150,151]. At higher 
concentrations, curcumin induced apoptosis in HSCs[149,152].  
Increased expression of  connective tissue growth factor 
(CTGF) in HSCs increases ECM production and is 
mediated by NF-κB. In these cells, curcumin suppressed 
gene expression of  Toll-like receptor-4, thus inhibiting 
NF-κB and suppressing CTGF expression[153].

In liver flukeinfected hamsters that develop advanced 
periductal fibrosis, long-term treatment with curcumin 
reduced fibrosis via inhibition of  TIMPs (tissue inhibi-
tors of  MMPs)[154]. After curcumin feeding, liver damage, 
cholestasis and fibrosis were reduced in Mdr2 (/) mice, a 
murine model of  chronic cholangiopathy, and cholangio-
cyte proliferation and expression of  the activation marker 
vascular cell adhesion molecule-1 was inhibited[155]. In car-
bon tetrachloride (CCl4)-induced liver damage in Sprague-
Dawley rats, curcumin inhibited CCl4-induced NF-κB 
expression and proinflammatory cytokines and signifi-
cantly reduced hepatic collagen deposition[156], improved 
hepatic antioxidant activity[157,158] and induced apoptosis in 
HSCs[159]. When liver cirrhosis was induced with thioacet-
amide, curcumin reduced oxidative stress, inhibited HSC 
activation and collagen alpha 1 expression and inhibited 
the development of  liver cirrhosis[160]. Mice fed with a 
diet deficient in methionine and choline (MCD) develop 
nonalcoholic steatohepatitis. In MCD mice, curcumin 
significantly reduced fibrosis and decreased the intrahe-
patic expression of  monocyte chemoattractant protein1, 
CD11b, procollagen type Ⅰ, TIMP-1 and α-SMA[161]. 
These studies suggest that curcumin might be beneficial in 
liver fibrosis. However, conclusive clinical trials have still 
not been reported.

CURCUMIN AND INFLAMMATORY 
BOWEL DISEASE
Inflammatory bowel disease (IBD) refers to two chronic 
inflammatory diseases: ulcerative colitis, an inflammatory 
disease of  the colon mucosa, and Crohn’s disease with 
inflammation that extends much deeper mainly into the 
ileum. IBD mostly affects young people ages 15 to 30 but 
it can affect younger children and older adults. Treatment 
for IBD consists mainly of  antiinflammatory drugs and 
immunosuppressive agents. Thus, curcumin with its anti-
inflammatory properties is an ideal drug candidate to po
ssibly treat IBD. In human IBD, one study has achieved 
encouraging results. In a randomized, multicenter, double-
blind, placebo-controlled trial to assess the efficacy of  

curcumin as maintenance therapy in patients with quies- 
cent ulcerative colitis, recurrence rates in curcumin-tre-
ated patients were significantly lower than in the placebo 
group[162]. In a pilot study when curcumin was admini-
stered in an openlabel study to five patients with ulcera
tive proctitis and five patients with Crohn’s disease, all 
patients with proctitis improved and four patients with 
Crohn’s disease had a lowered CDAI score[163]. In colonic 
mucosal biopsies and colonic myofibroblasts isolated from 
children and adults with active IBD, curcumin reduced 
p38 MAPK activation, enhanced IL-10 and reduced IL1-
beta[164].

In recent years, the efficacy of  curcumin has been 
investigated in several experimental models of  IBD and 
has shown encouraging results. However, in IL10de
ficient mice, curcumin demonstrated only limited effec-
tiveness on Th-1-mediated colitis and only moderately 
improved colonic morphology, suggesting that curcumin’
s protective effects are IL-10-dependent[165]. A different 
study suggested that curcumin had potent anti-inflam-
matory effects in IL-10 deficient mice[166] only when it 
was emulsified in carboxymethyl cellulose, suggesting that 
bioavailability might be an issue. In multidrug resistance 
gene deficient (mdr1a/) mice that spontaneously develop 
intestinal inflammation predominantly in the colon, addi
tion of  curcumin to the diet significantly reduced the 
histological signs of  colonic inflammation[167]. Using mice 
with dinitrobenzene sulfonic acid (DNBS)-induced colitis, 
curcumin was shown to attenuate colonic inflammation 
through a mechanism that correlated with the inhibition 
of  the activation of  NF-κB and reduction in p38 MAPK 
activity[168]. In the DNBS mouse model of  IBD, curcumin 
was shown to interact with transient potential vanilloid 
receptor1 (TRPV1) in inflamed tissue to mediate a pro
tective action[169]. TRPV1 has been shown to play an im
portant role in visceral hypersensitivity.

In rats with experimentally induced colitis by intra-rec-
tal administration of  trinitrobenzenesulfonic acid (TNBS), 
curcumin attenuated inflammation through inhibition 
of  tolllike receptor (TLR)4 and MyD88, a pathway 
that induces NF-κB leading to inflammation[170,171], and 
NF-κB activation in colonic mucosa was suppressed[172]. 
Curcumin also inhibited p38 MAPK signaling, down-
regulated COX-2 and iNOS expression, and increased 
PGE2 expression in TNBS rats[173,174]. However, in TNBS
induced colitis in two different strains of  mice, BALB/c 
and SJL/J, curcumin significantly increased survival, pre 
vented weight loss and normalized disease activity in BA 
LB/c mice but not SJL/J mice, suggesting that the 
therapeutic value of  curcumin may differ depending on 
the nature of  immune dysregulation in IBD[175]. When rats 
with dinitrochlorobenzene (DNCB)-induced colitis were 
treated with curcumin, the mice showed a dose-dependent 
protection against colonic myeloperoxidase (MPO), lipid 
peroxidation (LPO) and alkaline phosphatase (ALP)  
activities. At the highest dose, curcumin inhibited DNCB-
induced overexpression of  NF-κB and iNOS in the colon 
and was almost equipotent with sulfasalazine in ame-

7 February 15, 2011|Volume 2|Issue 1|WJGP|www.wjgnet.com

Rajasekaran SA. Curcuminbased therapy



liorating colonic damage[176]. In the dextran sulfate sodium 
(DSS)-induced ulcerative colitis rat model, administration 
of  curcumin ahead of  the DSS challenge mitigated the 
injurious effects of  DSS[177]. A hydroxypropyl-beta cyclo-
dextrin complex of  curcumin[178] as well as solid lipid mi-
croparticles of  curcumin[179] significantly attenuated the de 
gree of  colitis caused by DSS. 

Curcumin may not act only on colonic epithelial cells 
but may also modulate the immune response by inhibi- 
 ting neutrophil chemotaxis and chemokines[180]. Neu-
trophils are the first cells recruited at the site of  inflam
mation and play a key role in the innate immune respon-
ses. In IBD, transepithelial neutrophil migration leads 
to impaired epithelial barrier function, perpetuation of  
inflammation and tissue destruction[180]. In addition, cur-
cumin may prevent endothelial activation in IBD, cri- 
tical for binding and recruitment of  circulating leukocy-
tes during the inflammatory response. In primary cul- 
tures of  human intestinal microvascular endothelial cells 
(HIMEC), curcumin inhibited Akt/MAPK/NFκB ac-
tivity and prevented nuclear translocation of  the p65 NF-
κB subunit following tumor necrosis factor (TNF)-α/
lipopolysaccharide (LPS) treatment[181]. Curcumin fur-
thermore inhibited the expression of  VCAM-1 (vascular 
cell adhesion molecule1) in HIMEC cells, which is critical 
for binding and recruitment of  circulating leukocytes[181] 
and reduction of  COX-2 and PGE2 and inhibition of  
MAPK signaling[78]. Consistent with these studies in 
cultured cells, in TNBS-induced colitis in mice, curcumin 
treatment resulted in a significant reduction of  neutrophil 
invasion[182] and CD4 (+) T-cell infiltration[183]. Thus, 
curcumin shows promise as a potential therapeutic agent 
for the treatment of  patients with IBD.

BIOAVAILABILITY OF CURCUMIN 
Although the pharmacological safety of  curcumin pro-
mises a great potential for treatment and prevention of  
various diseases, the relatively low bioavailability of  cur-
cumin is a major hurdle for clinical development. Cur- 
tailing curcumin’s bioavailability primarily are its poor 
absorption and rapid metabolism resulting in low serum 
levels, limited tissue distribution and short half-life. Dis-
tribution studies for curcumin showed its preferential accu-
mulation in the intestine, colon and liver and might be 
one of  the major reasons why its most promising in vivo 
effects have been in gastrointestinal diseases when com-
pared with other organ systems. The liver, and to a lesser 
extent the intestinal mucosa, were found to be the major 
organs responsible for metabolism of  curcumin[5]. Once 
absorbed, curcumin is readily conjugated to form cur-
cumin glucuronides and curcumin sulfates or it is reduced 
to hexahydrocurcumin. To date, there is no clear un-
derstanding whether these curcumin metabolites are phar-
macologically as active as curcumin or whether these con-
jugates have effects that differ from those of  curcumin.

Novel approaches to overcome the problem of  low 
bioavailability of  curcumin are being developed. These 

approaches include adjuvants that can block the metabolic 
pathways of  curcumin and improved formulations for cur-
cumin delivery such as liposomes, micelles, phospholipid 
complexes and nanoparticles. Piperine is a known inhibitor 
of  hepatic and intestinal glucuronidation and combined 
administration of  piperine and curcumin greatly enhances 
curcumin's bioavailability[184]. Another agent showing 
synergistic effects with curcumin is quercetin, used in a 
clinical study in patients with FAP in which the number 
of  polyps decreased[93].

Encapsulation of  curcumin in liposomes with their 
hydrophilic and hydrophobic properties should offer an  
excellent drug delivery system. Liposomal curcumin has  
shown anti-tumor activity in pancreatic carcinoma cells 
and inhibits pancreatic carcinoma growth[104]. In vivo stu- 
dies on colorectal tumor xenografts showed that lipo-
somal curcumin enhanced the antitumor effect of  oxa-
liplatin[73]. While these studies showed that liposomal 
curcumin is bioactive, the increased bioavailability of  en- 
capsulated curcumin in vivo still needs to be conclusively 
demonstrated. 

Nanoparticle-based systems are one of  the most pro- 
mising delivery systems for curcumin but are still in their 
infancy. A recent study using a polymer-based nanopar- 
ticle of  curcumin found it to have a molecular activity 
similar to free curcumin in pancreatic cell lines[185]. Encap-
sulation of  curcumin in a pluronic block copolymer de-
monstrated a slow and sustained release of  curcumin and 
showed comparable anticancer activity with free curcu- 
min[186]. Thus, nanotechnology-based approaches to incr-
ease curcumin delivery in vivo are evolving and are very 
promising in overcoming the problem of  bioavailability 
of  curcumin, a drug with high potential as a therapeutic 
for gastrointestinal cancers and inflammatory diseases as 
well as liver fibrosis.

CONCLUSIONS AND PERSPECTIVES
Curcumin has been used for many centuries to treat va-
rious diseases. With its vast array of  molecular targets 
it has shown great potential as a therapeutic agent for 
various cancer types and for inflammatory conditions. 
Because of  its increased bioavailability in the gastroin- 
testinal tract, gastrointestinal diseases including inflam- 
 matory bowel diseases, hepatic fibrosis and gastrointestinal 
cancers are one of  the most investigated diseases demon-
strating the therapeutic potential of  curcumin. Over many 
millennia, natural products have often been the only 
means to treat diseases and injuries. With the advances 
in molecular biology and combinatorial chemistry during 
the past few decades, natural products have taken a se-
condary role in drug discovery. However, in the past few 
years, the interest in natural drugs as compounds for 
drug development has been renewed. As a natural pro-
duct, curcumin has taken precedence over many other 
compounds and biomedical research on curcumin is ever-
increasing. As the problems of  curcumin absorption, 
biodistribution, metabolism and elimination are being 
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overcome to enhance its bioavailability, diseases of  the 
gastrointestinal tract will be at the forefront as one of  the 
most promising targets for curcumin therapy.
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